H(t)=-4.9t^2+75t+12

Simple and best practice solution for H(t)=-4.9t^2+75t+12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H(t)=-4.9t^2+75t+12 equation:



(H)=-4.9H^2+75H+12
We move all terms to the left:
(H)-(-4.9H^2+75H+12)=0
We get rid of parentheses
4.9H^2-75H+H-12=0
We add all the numbers together, and all the variables
4.9H^2-74H-12=0
a = 4.9; b = -74; c = -12;
Δ = b2-4ac
Δ = -742-4·4.9·(-12)
Δ = 5711.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-74)-\sqrt{5711.2}}{2*4.9}=\frac{74-\sqrt{5711.2}}{9.8} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-74)+\sqrt{5711.2}}{2*4.9}=\frac{74+\sqrt{5711.2}}{9.8} $

See similar equations:

| 4(2x+1)=-3(5x-5) | | (2/3)^2x+11=(27/8)^3 | | (7m+4)(3m+4)=0 | | 3/2(2x+6)=3x+0 | | -8=-3/8x-2 | | x=-900+(-700) | | -7=-3/8x-2 | | 9s.4=144 | | 3(3x+3)=-5(5x-3)+3x | | -5=-3/8x-2 | | x=-900-(-700) | | 9=-3/8x-2 | | X+5y=105 | | 16+-6x=-6(x+3) | | 4(x+2)+1=29 | | (6x+5)=(4x-2)=(8x-21) | | -2x+6x-7x=10 | | u÷2=46 | | 5x-10+120=180 | | 3.3x-30=2.8x+6 | | c=25-(-13) | | 1/4p-2=3 | | g+12=-18g+12+19g | | 27+(7x-2)=(2x+8) | | 4n^2+8n=-15 | | (14x+4)(16x-4)=180 | | (7x-2)=(2x+8+27) | | 3a+23-9a-16=25 | | -17+12c+12c=19+18c | | 9x-56=2x | | (7x-2)=(2x+8)=27 | | 4(x+14)-3(-x+7)=28 |

Equations solver categories